DataFrame
in Pandas is a two - dimensional labeled data structure with columns of potentially different types. There are scenarios where you might want to create an empty DataFrame
that has the same structure (column names and data types) as an existing DataFrame
. This can be useful when you want to build a new dataset based on the same schema, or when you need to initialize a DataFrame
to hold results from iterative operations. In this blog post, we’ll explore how to create an empty DataFrame
from another DataFrame
in Pandas, including core concepts, typical usage, common practices, and best practices.A DataFrame
in Pandas is similar to a table in a relational database or an Excel spreadsheet. It consists of rows and columns, where each column can have a different data type (e.g., integers, floating - point numbers, strings). The structure of a DataFrame
is defined by its column names and the data types of those columns.
When creating an empty DataFrame
from another, we are essentially replicating the column names and data types of the original DataFrame
while leaving the rows empty. This allows us to have a DataFrame
ready to receive data in the same format as the original.
The most straightforward way to create an empty DataFrame
from another DataFrame
is to use the DataFrame
constructor and pass in the column names and data types from the original DataFrame
.
import pandas as pd
# Create an original DataFrame
original_df = pd.DataFrame({
'col1': [1, 2, 3],
'col2': ['a', 'b', 'c'],
'col3': [1.1, 2.2, 3.3]
})
# Create an empty DataFrame with the same columns and dtypes
empty_df = pd.DataFrame(columns=original_df.columns, dtype=original_df.dtypes)
In this code, we first create an original DataFrame
named original_df
. Then, we use the DataFrame
constructor to create a new DataFrame
named empty_df
. We pass the column names of original_df
to the columns
parameter and the data types of original_df
to the dtype
parameter.
Once you have created an empty DataFrame
with the same structure as another DataFrame
, you might want to append data to it. Here’s an example of how to do this:
import pandas as pd
# Create an original DataFrame
original_df = pd.DataFrame({
'col1': [1, 2, 3],
'col2': ['a', 'b', 'c'],
'col3': [1.1, 2.2, 3.3]
})
# Create an empty DataFrame with the same columns and dtypes
empty_df = pd.DataFrame(columns=original_df.columns, dtype=original_df.dtypes)
# Create a new row of data
new_row = {'col1': 4, 'col2': 'd', 'col3': 4.4}
# Append the new row to the empty DataFrame
empty_df = empty_df.append(new_row, ignore_index=True)
In this code, we first create an empty DataFrame
with the same structure as original_df
. Then, we create a new row of data as a dictionary. Finally, we use the append
method to add the new row to the empty DataFrame
. The ignore_index=True
parameter is used to reset the index of the DataFrame
after appending the new row.
pd.concat
Instead of append
The append
method in Pandas is being deprecated in favor of pd.concat
. Here’s how you can use pd.concat
to append data to the empty DataFrame
:
import pandas as pd
# Create an original DataFrame
original_df = pd.DataFrame({
'col1': [1, 2, 3],
'col2': ['a', 'b', 'c'],
'col3': [1.1, 2.2, 3.3]
})
# Create an empty DataFrame with the same columns and dtypes
empty_df = pd.DataFrame(columns=original_df.columns, dtype=original_df.dtypes)
# Create a new row of data
new_row = pd.DataFrame({'col1': [4], 'col2': ['d'], 'col3': [4.4]})
# Concatenate the new row to the empty DataFrame
empty_df = pd.concat([empty_df, new_row], ignore_index=True)
In this code, we create a new row as a DataFrame
instead of a dictionary. Then, we use pd.concat
to combine the empty DataFrame
and the new row. The ignore_index=True
parameter is used to reset the index of the resulting DataFrame
.
import pandas as pd
# Create an original DataFrame
original_df = pd.DataFrame({
'col1': [1, 2, 3],
'col2': ['a', 'b', 'c'],
'col3': [1.1, 2.2, 3.3]
})
# Create an empty DataFrame with the same columns and dtypes
empty_df = pd.DataFrame(columns=original_df.columns, dtype=original_df.dtypes)
# Simulate iterative data addition
for i in range(3):
new_row = pd.DataFrame({
'col1': [i + 4],
'col2': [chr(ord('d') + i)],
'col3': [float(i + 4.4)]
})
empty_df = pd.concat([empty_df, new_row], ignore_index=True)
print(empty_df)
In this example, we simulate iterative data addition by using a for
loop. In each iteration, we create a new row as a DataFrame
and use pd.concat
to add it to the empty DataFrame
.
Creating an empty DataFrame
from another DataFrame
in Pandas is a useful technique when you need to work with data that has the same structure. By using the DataFrame
constructor and passing in the column names and data types of the original DataFrame
, you can easily create an empty DataFrame
with the same schema. When appending data to the empty DataFrame
, it’s recommended to use pd.concat
instead of the deprecated append
method.
A: You might need to do this when you want to build a new dataset based on the same schema as an existing dataset, or when you need to initialize a DataFrame
to hold results from iterative operations.
A: Yes, you can simply pass a list of the desired column names to the columns
parameter of the DataFrame
constructor.
append
and pd.concat
?A: The append
method is being deprecated in Pandas. pd.concat
is more flexible and can handle multiple DataFrame
objects at once. It’s also more efficient when appending multiple rows or DataFrame
objects.