The cumulative sum is the most basic concept behind cumulative plots. Given a series of data points, the cumulative sum at each point is the sum of all the previous data points up to that point. For example, if we have a series [1, 2, 3, 4]
, the cumulative sum would be [1, 3, 6, 10]
. In pandas, we can calculate the cumulative sum using the cumsum()
method.
The cumulative distribution function is a statistical concept that gives the probability that a random variable is less than or equal to a certain value. In the context of data analysis, a cumulative distribution plot shows the proportion of data points that are less than or equal to a given value. In pandas, we can create a cumulative distribution plot by normalizing the cumulative sum.
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
We can create a simple pandas Series or DataFrame for demonstration purposes.
# Create a sample Series
data = pd.Series([1, 2, 3, 4, 5])
cumulative_sum = data.cumsum()
cumulative_sum.plot()
plt.title('Cumulative Sum Plot')
plt.xlabel('Index')
plt.ylabel('Cumulative Sum')
plt.show()
When dealing with time series data, cumulative plots can show how a variable accumulates over time. For example, we can use a cumulative plot to show the total sales over a period of time.
# Create a sample time series DataFrame
date_rng = pd.date_range(start='2023-01-01', end='2023-01-10', freq='D')
sales = pd.Series(np.random.randint(0, 100, size=len(date_rng)), index=date_rng)
cumulative_sales = sales.cumsum()
cumulative_sales.plot()
plt.title('Cumulative Sales over Time')
plt.xlabel('Date')
plt.ylabel('Cumulative Sales')
plt.show()
We can also compare the cumulative plots of different groups in a DataFrame. For example, if we have a DataFrame with sales data for different regions, we can plot the cumulative sales for each region.
# Create a sample DataFrame with sales data for different regions
regions = ['North', 'South', 'East', 'West']
date_rng = pd.date_range(start='2023-01-01', end='2023-01-10', freq='D')
data = {region: np.random.randint(0, 100, size=len(date_rng)) for region in regions}
df = pd.DataFrame(data, index=date_rng)
cumulative_df = df.cumsum()
cumulative_df.plot()
plt.title('Cumulative Sales by Region')
plt.xlabel('Date')
plt.ylabel('Cumulative Sales')
plt.legend()
plt.show()
When comparing cumulative plots of different variables or groups, it is often a good idea to normalize the data. This can make the comparison more meaningful, especially when the variables have different scales.
# Normalize the cumulative sales data
normalized_cumulative_df = cumulative_df / cumulative_df.max()
normalized_cumulative_df.plot()
plt.title('Normalized Cumulative Sales by Region')
plt.xlabel('Date')
plt.ylabel('Normalized Cumulative Sales')
plt.legend()
plt.show()
Annotations can make the plot more informative. For example, we can add annotations to show important points on the cumulative plot, such as the point where the cumulative sum reaches a certain threshold.
# Add an annotation to the cumulative sales plot
threshold = 500
index = cumulative_sales[cumulative_sales >= threshold].index[0]
value = cumulative_sales[index]
plt.annotate(f'Reached {threshold}', xy=(index, value), xytext=(index, value + 100),
arrowprops=dict(facecolor='red', shrink=0.05))
cumulative_sales.plot()
plt.title('Cumulative Sales over Time with Annotation')
plt.xlabel('Date')
plt.ylabel('Cumulative Sales')
plt.show()
import pandas as pd
import matplotlib.pyplot as plt
# Create a sample Series
data = pd.Series([1, 2, 3, 4, 5])
cumulative_sum = data.cumsum()
cumulative_sum.plot()
plt.title('Cumulative Sum Plot')
plt.xlabel('Index')
plt.ylabel('Cumulative Sum')
plt.show()
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# Create a sample time series DataFrame
date_rng = pd.date_range(start='2023-01-01', end='2023-01-10', freq='D')
sales = pd.Series(np.random.randint(0, 100, size=len(date_rng)), index=date_rng)
cumulative_sales = sales.cumsum()
cumulative_sales.plot()
plt.title('Cumulative Sales over Time')
plt.xlabel('Date')
plt.ylabel('Cumulative Sales')
plt.show()
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# Create a sample DataFrame with sales data for different regions
regions = ['North', 'South', 'East', 'West']
date_rng = pd.date_range(start='2023-01-01', end='2023-01-10', freq='D')
data = {region: np.random.randint(0, 100, size=len(date_rng)) for region in regions}
df = pd.DataFrame(data, index=date_rng)
cumulative_df = df.cumsum()
cumulative_df.plot()
plt.title('Cumulative Sales by Region')
plt.xlabel('Date')
plt.ylabel('Cumulative Sales')
plt.legend()
plt.show()
Pandas cumulative plots are a powerful tool for data analysis and visualization. They can help us understand how values accumulate over time or across different categories, and compare different subsets of data. By following the typical usage methods, common practices, and best practices outlined in this blog post, intermediate-to-advanced Python developers can effectively use pandas cumulative plots in real-world situations.
Yes, you can calculate the cumulative sum of a DataFrame column using the cumsum()
method and then plot it. For example:
import pandas as pd
import matplotlib.pyplot as plt
data = {'col1': [1, 2, 3, 4, 5]}
df = pd.DataFrame(data)
cumulative_col1 = df['col1'].cumsum()
cumulative_col1.plot()
plt.show()
You can use the plt.savefig()
function to save the plot as an image. For example:
import pandas as pd
import matplotlib.pyplot as plt
data = pd.Series([1, 2, 3, 4, 5])
cumulative_sum = data.cumsum()
cumulative_sum.plot()
plt.savefig('cumulative_plot.png')
Pandas cumsum()
method will propagate the missing values. If you want to ignore the missing values, you can use the cumsum(skipna=True)
method.