pandas
is a powerhouse library that offers a wide range of tools for data manipulation. One of the fundamental operations when working with pandas
DataFrames is the ability to remove rows or columns. The drop
method in pandas
DataFrame provides this functionality, and the axis
parameter plays a crucial role in determining whether rows or columns are dropped. In this blog post, we’ll explore the core concepts, typical usage, common practices, and best practices related to the drop
method with the axis
parameter.drop
method?The drop
method in a pandas
DataFrame is used to remove specified labels from rows or columns. It returns a new DataFrame with the specified rows or columns removed, leaving the original DataFrame unchanged unless the inplace
parameter is set to True
.
axis
parameterThe axis
parameter in the drop
method is used to specify whether the labels refer to rows or columns. It can take two main values:
axis = 0
or axis = 'index'
: This indicates that the labels refer to rows. When you use drop
with axis = 0
, you are dropping rows from the DataFrame.axis = 1
or axis = 'columns'
: This indicates that the labels refer to columns. When you use drop
with axis = 1
, you are dropping columns from the DataFrame.The basic syntax of the drop
method is as follows:
DataFrame.drop(labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors='raise')
labels
: The labels (row or column names) to drop. It can be a single label or a list of labels.axis
: Specifies whether to drop rows (axis = 0
or axis = 'index'
) or columns (axis = 1
or axis = 'columns'
).index
: An alternative way to specify the row labels to drop.columns
: An alternative way to specify the column labels to drop.level
: If the DataFrame has a multi - level index, this parameter can be used to specify the level on which to drop the labels.inplace
: If True
, the operation is performed on the original DataFrame instead of returning a new one.errors
: Specifies how to handle errors if the labels do not exist. If set to 'raise'
, it will raise an error; if set to 'ignore'
, it will ignore the non - existent labels.import pandas as pd
# Create a sample DataFrame
data = {
'Name': ['Alice', 'Bob', 'Charlie'],
'Age': [25, 30, 35]
}
df = pd.DataFrame(data)
# Drop the row with index 1
df_dropped_row = df.drop(1)
print(df_dropped_row)
# Drop the 'Age' column
df_dropped_column = df.drop('Age', axis=1)
print(df_dropped_column)
inplace = True
: It can make the code harder to debug and understand, especially in long scripts. It’s better to return a new DataFrame and assign it to a new variable.errors = 'ignore'
if you are not sure if all the labels you want to drop exist in the DataFrame.import pandas as pd
# Create a sample DataFrame
data = {
'Name': ['Alice', 'Bob', 'Charlie', 'David'],
'Age': [25, 30, 35, 40]
}
df = pd.DataFrame(data)
# Drop rows with index 1 and 3
rows_to_drop = [1, 3]
df_dropped_rows = df.drop(rows_to_drop)
print(df_dropped_rows)
# Create a sample DataFrame
data = {
'Name': ['Alice', 'Bob', 'Charlie'],
'Age': [25, 30, 35],
'City': ['New York', 'Los Angeles', 'Chicago']
}
df = pd.DataFrame(data)
# Drop columns 'Age' and 'City'
columns_to_drop = ['Age', 'City']
df_dropped_columns = df.drop(columns_to_drop, axis=1)
print(df_dropped_columns)
errors = 'ignore'
# Create a sample DataFrame
data = {
'Name': ['Alice', 'Bob', 'Charlie'],
'Age': [25, 30, 35]
}
df = pd.DataFrame(data)
# Try to drop a non - existent column with errors='ignore'
columns_to_drop = ['NonExistentColumn']
df_dropped_safely = df.drop(columns_to_drop, axis=1, errors='ignore')
print(df_dropped_safely)
The drop
method in pandas
DataFrame with the axis
parameter is a powerful tool for removing rows or columns from a DataFrame. By understanding the core concepts, typical usage, common practices, and best practices, you can effectively use this method in real - world data analysis scenarios. Remember to use it carefully, especially when dealing with the inplace
parameter, and always check for label existence to avoid errors.
axis
parameter?If you don’t specify the axis
parameter, the default value is 0
(or 'index'
), which means the drop
method will try to drop rows.
The drop
method is designed to drop either rows or columns at a time. If you want to drop both, you can call the drop
method twice.
You can use boolean indexing to filter the DataFrame based on a condition and then assign the result to a new variable. For example:
import pandas as pd
data = {
'Age': [25, 30, 35]
}
df = pd.DataFrame(data)
df_filtered = df[df['Age'] > 30]
print(df_filtered)
pandas
official documentation:
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.drop.html